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I. Introduction (320 words) 
How can we explain cross-national differences in innovative activity across the industrialized 

democracies? Politics appear to play a strong causal role here, with case study after case study showing the clear 

influence of politics and political institutions on technological innovation.1 However, this phenomenon is only 

sparsely studied by political scientists. Rather, this area has largely become the purview of small number of 

economists and sociologists who often ignore important political variables in their analysis. Thus great interest 

has recently been generated by a new “Varieties of Capitalism” (VOC) theory of innovation which holds that 

variance in political institutions is the primary cause of differences in national innovative behavior. In brief, the 

central claim of VOC’s innovation theory is that the more a polity allows the market to structure its economic 

relationships, the more it will direct its inventive activity towards industries typified by “radical” technological 

change. Conversely, the more a polity chooses to coordinate economic relationships via non-market 

mechanisms, the more it will direct its inventive activity towards “incremental” technological change.  Implicit 

in these predictions is an assumption that industries differ by the type of technological innovation conducted 

within them: that some industries are more technologically revolutionary and others more incremental. As VOC 

theory has yet to be proven, in this paper I will make use of new data on patents, scholarly publications, and 

technological diffusion to test VOC theory’s central assumptions and predictions and to see whether VOC 

theory properly describes the empirical world of technological innovation. It will be shown that while some 

industries are indeed more radically innovative than others in the short-run, this cannot be confirmed in the long-

run as industries age and mature technologically. I also find that VOC theory does not accurately predict 

innovative behavior over time and space, and that VOC’s existing empirical support strongly depends upon the 

inclusion of a major outlier, the United States, in the set of radically innovative countries.  
 
II. Politics, Economics, and Innovation Theory (860 words) 
 For much of the history of political economy, questions about the causes of national differences in 

technological innovation have remained at the periphery of the field.2 One of the major reasons for this was the 

apparently random, or at least inexplicable, nature of innovation itself; even those social scientists who 

attempted to deal systematically with technological change (including Marx, Schumpeter, and Solow) generally 

regarded it, and the underlying body of scientific knowledge upon which it drew, as a “black box” proceeding 

according to its own internal processes largely independent of political or economic forces.3 This attitude 

changed gradually during the Cold War, as vast expenditures by the US government and industry on R&D made 

it increasingly clear that technological innovation could be made responsive to economic and political needs, a 

fact further punctuated by the Soviet launch of Sputnik and later by the Japanese and German economic 

“miracles”. In response, economists during the 1960’s began to investigate whether certain supply-side or 
                                                           
1  Edwards 1996; Bauer 1995; Mokyr 1990; Beasley 1988; and Rosenberg 1985. 
2 Technology is defined as a physical product, or a process of handling physical materials, which is used as an aid in problem solving. 
More precisely, technology is a product or process which allows social agents to perform entirely new activities or to perform established 
activities with increased efficiency. Innovation is the discovery, introduction, and/or development of new technology, or the adaptation of 
established technology to a new use or to a new physical or social environment.   
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demand-side variables could explain why even developed nations followed different technological trajectories.4 

This somewhat inconclusive debate was followed in the late-1970s and 1980s by a plethora of case and country 

studies which tended to emphasize the importance of this or that policy, these or those historical conditions, but 

failed to produce any generalizable theory about the rate or direction of national innovation.  

A recurring problem encountered in these debates was the contradiction between empirical observation 

and certain fundamental tenets of the economics of science. Specifically, Kenneth Arrow had shown that much 

productive knowledge takes the form of unpatentable laws of nature and advances in basic science, and is 

therefore a non-excludable public good available to everyone without charge.5 And while patents and trade 

secrets act as temporary solutions to this appropriability problem in the area of applied knowledge, history has 

shown that the original inventors of technology often do not capture most of the benefits of their innovations 

when these inventions are transferred across borders, and that these transfers take place even in spite of 

considerable efforts to stop them. Theoretically speaking then, in the long-run, developed nations should not 

display significant variation in either per capita innovation rates or in the type of innovative activities which 

they pursue. Yet differences appear to abound.  

One possible solution to this paradox is institutions. Institutions are perhaps the only variables which 

both influence the incentives for innovative behavior and which differ across nations. Indeed, political scientists 

and economists have long recognized the capacity of government, labor, regulatory, and legal institutions to 

inhibit free market exchange and thereby hamper innovation. But it was not until Paul Romer endogenized 

technological change that social scientists began to take seriously the ability of institutions to actively enhance 

aggregate economic performance through their effects on the rate and direction of technological progress.6 To 

date though, beyond the broadest brushstrokes of political-economic theory, social scientists have yet to pin-

point the specific mechanisms by which institutions cause countries to differ technologically.  

It is into this environment which Varieties of Capitalism theory makes its foray, taking a radical new 

approach to explaining cross-national differences in the direction of technological progress. VOC theory is 

broad and foundational, it touches upon multiple aspects of political and economic life, of which innovation is 

but one part. At its most basic level, it is a theory of capitalism by gradation: some countries use markets more 

than others to coordinate economic actors and this variation is used to explain a myriad of comparative and 

international political-economic behavior. However, when fully articulated, we find that VOC theory does not 

divide the world into “free-trade vs. protectionist” or “state-owned vs. privatized” systems of political economy 

as is traditionally done. To do this would be to focus attention on the state, which VOC scholars wish to avoid. 

Rather, they view the firm as the locus of trade and production in the capitalist economy, and therefore take the 

firm, not the state, as their primary unit of analysis. Nor is the firm a lone or independent actor in VOC’s 

analysis; successful operation of the firm depends heavily upon its relationships with labor, investors, and other 
                                                                                                                                                                                                       
3 For an alternative view of Marx, see Bimber 1994. 
4 Summarized in Mowrey and Rosenberg 1979. 
5 Arrow 1962.  
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firms. It is these crucial relationships that, in turn, explain patterns of economic activity and policymaking. 

Therefore the central claims of VOC theory focus on how a given political-economy’s institutional structure 

determines the conduct of these crucial relationships and how economic actors organize to solve the classic 

coordination problems which afflict such relations.7 At one end of this relationship spectrum lie the “Liberal 

Market Economies” (LME’s), such as the United States, in which firms tend to coordinate their relations and 

activities in the manner described by Oliver Williamson: through internal corporate hierarchies and external 

competitive market arrangements.8 At the other end of the spectrum sit the “Coordinated Market Economies” 

(CME’s), such as Germany, where firms tend to coordinate via non-market relationships, with greater 

dependency on relational and incomplete contracting, exchanges of private information within enduring 

networks, and a high degree of actor collaboration (as opposed to competition or confrontation). As we shall see 

in the next section, these distinctions have important implications for explaining and predicting national 

differences in innovation.  
 
III. Varieties of Capitalism’s Theory of Technological Innovation (810 words) 
 According to VOC theory, technological innovation comes in two types, radical and incremental, each 

of which forms the basis for a different mode of production. While an exact definition is elusive, VOC scholars 

describe radical innovation as that which “...entails substantial shifts in product lines, the development of 

entirely new goods, or major changes to the production processes.”9  They argue that radical innovation is 

therefore vital to production in high-technology sectors which require rapid and significant product changes 

(biotechnology, semiconductors, software) or in the manufacture of complex systems-based products 

(telecommunications, defense, airlines). Incremental innovation, on the other hand, is that which is “marked by 

continuous but small-scale improvements to existing product lines and production processes.”10 Unlike 

production based on radical innovation where speed and flexibility are crucial, production based on incremental 

innovation prioritizes the maintenance of high quality in established goods. This involves constant 

improvements in manufacturing processes to bring down costs and prices, but only occasional minor 

improvements in the product line. Incremental innovation is therefore essential for competitiveness in capital 

goods production (machine tools, factory equipment, consumer durables, engines).  

 VOC theory further predicts that LME’s and CME’s will tend to exert greater effort towards, and be 

successful in, different types of technological innovation. VOC theory interprets innovation as just another 

productive activity, therefore innovation should be sensitive to the firm’s crucial relationships described above 

and the institutions which structure them. This does not mean that a given political-economic structure will 

result in only one kind of innovation, but that different institutions will create different types of comparative 

advantage for innovators. For example, incremental innovation requires a workforce that is skilled enough to 

                                                                                                                                                                                                       
6 Romer 1990. 
7 I am concerned here with those aspects of VOC theory discussed in Hall and Soskice p. 1-44. 
8 Williamson 1975, 1985. 
9 Hall & Soskice 2001, 38-39. 
10 Hall & Soskice 2001, 39. 
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come up with it, secure enough to risk suggesting it, and have enough autonomy to see innovation as a part of 

their job. This in turn requires that firms provide workers with secure environments, autonomy in the workplace, 

opportunities to influence firm decisions, education and training beyond just task-specific skills (preferably 

industry-specific technical skills), and close inter-firm collaboration which encourages clients and suppliers to 

suggest innovations as well. These are exactly the kinds of apparatus provided by CME institutions. In fact, 

CME’s are defined by the very institutions which provide a comparative advantage for incremental innovation. 

These institutions include highly coordinated industrial-relations systems; corporate structures characterized by 

works councils and consensus-style decision-making; a dense network of inter-corporate linkages (such as 

interlocking corporate directorates and cross-shareholding); systems of corporate governance that insulate 

against hostile takeovers and reduce sensitivity to current profits; and appropriate laws for relationship-based, 

incomplete contracting between firms. VOC scholars argue that this combination of institutions results in long 

employment tenures, corporate strategies based on product differentiation rather than intense product 

competition, and formal training systems for employees which focus on high-skills and a mix of company-

specific and industry-specific skills; in other words, the very factors which combine to foster incremental 

innovation. 

On the other hand, VOC scholars argue that these same CME institutions which provide comparative 

advantages for incremental innovation also serve as obstacles to radical innovation. For instance, worker 

representation in the corporate leadership combines with consensus-style decision-making to make radical 

change and reorganization difficult. Also, long employment tenures make acquisition of new skills and re-

balancing one’s labor mix difficult. And dense inter-corporate networks make the diffusion of disruptive 

innovations slow and arduous, and technological acquisition by M&A or takeovers hard. All of these act against, 

or reduce the potential rewards of, radical innovation. 

In LME’s, the situation is reversed. LME’s are defined by institutions which provide a comparative 

advantage for radical innovation, while creating obstacles to incremental innovation. LME’s have flexible labor 

markets with few restrictions on layoffs, which means that companies can drastically change their product lines 

and still acquire the proper labor mix. LME’s also support extensive equity markets with dispersed shareholders 

providing innovators of all sizes with relatively unfettered access to capital. Also, inter-firm relations in LME’s 

allow for a variety of aggressive asset exchanges with few restrictions on mergers and acquisition, buyouts, 

personnel poaching, licensing, etc., which permits firms to easily acquire scientific expertise and new 

technology. Concentration of power at the top of LME-based firms augments these institutions, allowing 

management to quickly force major change on complex organizations. All of these factors combine to create 

large incentives for, and an environment accommodative to, radical innovation. Conversely, LME’s capacity for 

incremental innovation is limited due to financial arrangements which emphasize current profitability, corporate 

structures that concentrate unilateral control at the top and eliminate workforce security, and anti-trust and 

contract laws which discourage inter-firm collaboration in incremental innovation. Meanwhile, fluid labor 

markets and short job tenures motivate workers to pursue selfish career goals and to acquire mobile general 
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skills rather than firm-specific or industry-specific skills. Hence, in VOC’s analysis, neither workers nor firms in 

LME’s tend to have the incentives or the resources for sustained incremental innovation. 
  

IV. Testing the Varieties of Capitalism Claims  (500 words) 
The purpose of the remainder of this article is not to evaluate the accuracy of the LME-CME 

classification system or test a specific causal mechanism involved in VOC’s theory of innovation. Rather, the 

question asked here is whether the international patterns of innovation which VOC theory predicts actually exist. 

The VOC causal story outlined above is both theoretically appealing and dovetails with some widely held 

stereotypes about national differences in innovation; however, little empirical data has yet been produced to 

support its central claim. The evidence offered by Hall & Soskice consists of four years of patent data from the 

European Patent Office (EPO) which shows that Germany and the US concentrate their patents according to the 

LME vs. CME model discussed above. Specifically, Hall & Soskice examine patenting activity by Germany and 

the US in 30 technology classes during 1983-84 and 1993-94 (Figure 1). Overall, they found that Germany’s 

patent specialization was almost equal and opposite that of the US in both time periods.11 More specifically, the 

Germans were found to be more active innovators in industries which Hall & Soskice characterize as dominated 

by incremental innovation (such as mechanical engineering, product handling, transport, consumer durables, and 

machine tools); meanwhile, firms in the US innovated disproportionately in industries which the authors 

perceive as more radically innovative (including medical engineering, biotechnology, semiconductors, and 

telecommunications). 
Figure 1: Patent Specialization by Technology Class 
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Note: Higher scores indicate greater specialization in innovation in that particular type of technology. Source: Charts reproduced here 
with data obtained through the cooperation of Thomas Cusack, David Soskice, and Peter Hall. See also Hall & Soskice 2001, pp 42-43. 
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11 Hall and Soskice’s methodology will be discussed in greater detail below.    



 
We can identify several possible problems with this approach. First, VOC theory implicitly assumes that 

some industries are inherently characterized by radical innovation, others by incremental innovation, and that 

these industries have been correctly identified. Second, in supporting their claims, Hall & Soskice use only 4 

years worth of patent data from only 2 countries, one of which, the United States, is an outlier by almost any 

measure. Third, Hall & Soskice use only simple patent counts as their measure of innovation, hence frivolous 

patents are counted the same as highly innovative ones; nor do they use any non-patent measures of innovation. 

In the following sections, I will address these issues in turn. In some instances, I will use Hall & 

Soskice’s own data and methods to test the generality of their claims. In others, I will take advantage of a new 

dataset compiled at the National Bureau of Economic Research (NBER) of over 2.9 million utility patents 

granted by the US Patent & Trademark Office (USPTO) to applicants from the United States and 162 other 

countries during 1963-1999, and the 16 million citations made to these patents between 1975 and 1999.12 This 

new dataset will allow us to go beyond Hall & Soskice’s empirical investigation and to consider some thirty-six 

years of patenting activity for all of the LME and CME countries and to weight a majority of these patents by 

forward citations in an attempt to control for the quality of the innovations being patented. Later, data from the 

Institute for Scientific Information (ISI) on scholarly and professional journal publications, also weighted by 

forward citations, will be considered as an additional measure of innovation.   
 
a. Independent Variable: LME vs. CME (390 words) 

According to VOC theory, the primary independent variable for predicting innovation characteristics is 

the type of national political-economic institutional structure (LME or CME) within which innovators operate. 

The LME’s include Australia, Canada, Great Britain, Ireland, New Zealand, and the United States. The CME’s 

include Austria, Belgium, Denmark, Finland, Germany, Japan, Netherlands, Norway, Sweden, and Switzerland. 

In between these two ideal types, and of less importance to VOC scholars, sit a handful of hybrids denoted as 

“Mediterranean Market Economies” (MME’s) which have mixed CME and LME characteristics. These 

countries include France, Greece, Italy, Portugal, Spain, and Turkey.13 For the remainder of this article, 

references to the set of “LME”, “CME”, or “MME” countries should be understood to mean only those states 

listed above, as these are the only ones explicitly mentioned in the VOC claims tested here. Later, in the 

multivariate regressions, “LMEx” will be used to refer to the set of all LME countries except the US.  

Some critics might question the “LME-ness” or “CME-ness” of certain states classified above, for 

example the Oceanic countries during much of the Cold War. However, I employ the existing VOC 

classifications for several reasons. First, in VOC theory, it is not the amount of protectionism or regulatory 

burden that defines an LME or CME and determines its innovative profile, but whether markets or hierarchies 

form the context within which economic actors organize, conduct their relationships, and solve coordination 

                                                           
12 Hall, Jaffe, and Trajtenberg, 2001; database available at www.nber.org/patents. 
13 Countries such as Luxemborg and Iceland are eliminated from the VOC typology due to their small size, while others, such as Mexico, 
are disqualified because they are developing nations.  
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problems. Therefore when accepting the VOC country classifications, I privilege the relational aspects of the 

LME-CME distinction as discussed by Hall & Soskice, rather than protectionist or state-interventionist 

behavior, since the former are the most relevant and active mechanisms in VOC’s theory of innovation. Second, 

recall that the LME-CME dichotomy is not definitive but rather “constitute[s] ideal types at the poles of a 

spectrum”.14 All states have some degree of tariff and non-tariff barriers to trade, and no nation is free from 

regulation. Therefore there are shades of LME and CME in every economy, and these change over time, hence 

when accepting particular classifications, I pay attention not to absolute qualities but to relative ones. Finally, all 

classification systems have debatable aspects, and their acceptance is often based more on their usefulness rather 

than their exactitude. Part of the goal of this article is to test VOC theory as stated, which includes the usefulness 

of their typology.  

 
b. Dependent Variable: Innovation (940 words) 
 The most frequently used measure of innovation is patents. The debate over the proper use of patent 

data has proceeded vigorously and with increasing sophistication over the past several decades. The current 

consensus holds that patent data are acceptable measures of innovation when used in the aggregate (e.g. as a 

rough measure of national levels of innovation across long periods of time), but are not appropriate when used 

as a measure of micro-level innovation (to compare the innovativeness of individual firms or specific industries 

from year to year). And while this debate is ongoing and is better recounted elsewhere, this section will address 

some of the more pressing issues surrounding patent measures and their use in testing VOC theory.15  

Strictly speaking, a patent is a temporary legal monopoly granted by the government to an inventor for 

the commercial use of her invention, where the invention can take the form of a process, machine, article of 

manufacture, or compositions of matters, or any new useful improvement thereof. (USPTO)16 A patent is a 

specific property right which is granted only after formal examination of the invention has revealed it to be 

nontrivial (i.e. it would not appear obvious to a skilled user of the relevant technology), useful (i.e. it has 

potential commercial value), and novel (i.e. it is significantly different than existing technology). As such, 

patents have characteristics which make them a potentially useful tool for the quantification of inventive 

activity. First, patents are by definition related to innovation, each representing a “quantum of invention” that 

has passed the scrutiny of a trained specialist and gained the support of investors and researchers who must 

dedicate time, effort, and often significant resources for its physical development and subsequent legal 

protection. Second, patent data are widely available, and are perhaps the only observable result of inventive 

activity which covers almost every field of invention in most developed countries over long periods of time. 

Third, the granting of patents is based on relatively objective and slowly changing standards. Finally, the United 

                                                           
14  Hall & Soskice 2001, 8. 
15 For a review of the debate see Griliches 1990; Trajtenberg 1990; Archibugi and Pianta 1996; Harhoff, Narin, Scherer, and Vopel 1999; 
Eaton and Kortum 1999; Jaffe, Trajtenberg, and Fogarty 2000; Hall, Jaffe and Trajtenberg 2000, 2001. 
16 Designs and plant life can also be patented, however most econometric analysis of patent data is confined to utility patents granted for 
inventions such as those listed above. For a fuller description of patents and patent laws, classifications, and the application process see 
http://www.uspto.gov/main/patents.htm. 
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States Patent and Trademark Office and the European Patent Office provide researchers with centralized 

patenting institutions for the two largest markets for new technology. In practical terms, this allows researchers 

to get around the issue of national differences in patenting laws as well as providing two separate and fairly 

independent data pools.  

Given these qualities, patents have been used as a basis for the economic analysis of innovative activity 

for over thirty-five years. Current use began with the pioneering work of Frederic Scherer and Jacob 

Schmookler who used patent statistics to investigate the demand-side determinants of innovation.17 However, 

the labor intensive nature of patent analysis, which used to involve the manual location and coding of thousands 

of patent documents, severely limited the extent (or at least the appeal) of their use in political and economic 

research. These limitations were eased somewhat during the 1970s when the advent of machine-readable patent 

data sparked a wave of econometric analysis.18 In the late 1980s, the use of patent data was further facilitated by 

computerization, which increased the practical size of patent datasets into millions of observations. Most 

recently, Hall, Jaffe, & Trajtenberg at the NBER have compiled a statistical database of several million patents 

complete with geographic, industry, and citation information, which I will use later to test the VOC claims.19 

However, patents do have significant drawbacks which somewhat restrict, but by no means eliminate, 

their usage as an index of innovation. First, there is the classification problem, in that it is difficult to assign a 

particular industry to a patent, especially since the industry of invention may not be the industry of eventual 

production or the industry of use or benefit. I address this issue, where possible, by using two different patent 

datasets with assorted systems and levels of patent classification. Second, it is not yet clear what fraction of the 

universe of innovation is represented by patents, since not all inventions are patentable and not all patentable 

inventions are patented. This problem is exacerbated when attempting comparative research since different 

industries and different countries may exhibit significant variance in their propensity to patent. I address these 

concerns by using publications data in addition to patents. And although patents and publications both may be 

imprecise measures of innovation, as long as this measurement error is random and uncorrelated with the 

explanatory variables, then regressions using this data should produce unbiased estimates of the coefficients 

(and generally with inflated standard errors).  

Finally, some critics point out that patents vary widely in their technical and economic significance: 

most are for minor inventions, while a few represent extremely valuable and far-reaching innovations. 

Moreover, it has been found that simple patent counts do not provide a good measure of the radical-ness, 

importance, or “size” of an innovation. Simple patents counts correlate well with innovation inputs such as R&D 

outlays, but they are too noisy to serve as anything but a very rough measure of innovation output.20 Therefore I 

use patent counts which have been weighted by forward citations. Forward citations on patents have been found 

to be a good indicator of the importance or value of an innovation, just as scholarly journal articles are often 
                                                           
17 Scherer 1965; Schmookler 1966. 
18 Summaries of which can be found in Griliches 1984; Pakes 1986; and Griliches, Hall, and Pakes 1987. 
19 Hall, Jaffe, and Trajtenberg 2001. 
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valuated by the number of times they are cited. The idea here is that minor or incremental innovations receive 

few if any citations, and revolutionary innovations receive tens or hundreds. Empirical support for this 

interpretation has arisen in various quarters: citation weighted patents have been found to correlate well with 

market value of the corporate patent holder, the likelihood of patent renewal and litigation, inventor perception 

of value, and other measures of innovation outputs.21   

 
c. Testing the VOC Industry Assumption (1155 words) 
 Armed with a better understanding of patents, we can now use them to test some of the more 

controversial claims made by VOC scholars. One such controversy resides in their implicit assumption about the 

innovative characteristics of particular industries. VOC theory assumes that some industries are inherently and 

statically more radically innovative, and other industries inherently and statically more incrementally innovative. 

However, this assumption is contradicted by a vast empirical literature which shows that the innovative 

characteristics of any given industry are not static but dynamic, and depend not so much on industry type but on 

the industry’s technological maturity.22 More specifically, studies have found that most industries are typified by 

two successive waves of innovation: first a flurry of radical product innovations which eventually converge on a 

dominant product design, followed by a flurry of process innovations in manufacturing the product at lower 

cost. In each wave, earlier innovations tend to be more revolutionary than subsequent ones which build upon 

them. For example, during the first thirty years of automobile production, more than 100 US firms produced 

competing models of automobiles with tremendous variance in features and operability. During this period 

innovation focused on radical product changes: introduction of enclosed bodies, wheel-based steering, electrical 

systems, gasoline-based fuel and engine systems, etc. These innovations tended to be revolutionary and 

dramatically affected the look and performance of successive versions of the automobile, such that cars from 

this period bear little resemblance to the cars of today. However, as the market converged on a dominant design 

for automobiles, product innovations became gradually more incremental, and the focus of radical innovation 

shifted to production processes. This type of innovation dynamic has been observed in almost every industry 

which produces assembled products.  

If the innovative character of industry changes over time, then Hall & Soskice’s use of snapshots of 

patent activity in particular industries may not properly test VOC theory. That is, for the two brief time periods 

covered by Hall & Soskice’s patent data, we must ask whether the researchers correctly identify which 

industries were more radically or incrementally innovative. In order to answer this question I rely on the ability 

of forward citations to serve as a measure of “degree” or “value” of an innovation. For my empirical evidence, I 

make use of the newly compiled NBER patent dataset described above. Using the USPTO patent classifications, 

the NBER scholars have grouped their data into six industry categories, each consisting of 4-7 sub-categories 

                                                                                                                                                                                                       
20 Griliches 1984. 
21 Trajtenberg 1990; Hall, Jaffe, and Trajtenberg 2000; Lanjouw and Shankerman 1997, 1999; Jaffe, Trajtenberg, and Fogarty 2000. 
22 Summarized in Utterback 1994.  
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(for a total of 36 subcategories), which will allow us to compare the average patent citation rates across different 

industries.
Fig 2: Patents & Forward Citations by Industry, 1963-99  
Industry 
Category 

# 
patents 

Mean 
(fwd. 
cites  
per 
patent) 

Standard 
Dev. 

(fwd. cites 
per 

patent) 

Min. 
(fwd. 

cites per 
patent) 

Max. 
(fwd. 
cites 
per 

patent) 
IT/Telecom   290337 6.44 10.6 0 779 
Drugs/Med   204199 5.99 11.2 0 631 
Electric   499741 4.75 6.70 0 251 
Chemicals   606934 4.62 7.14 0 401 
Others   641333 4.46 5.90 0 286 
Mechanical   681378 4.17 5.71 0 411 
Total 2923922 4.78 7.35 0 779 
Source: NBER 2001. 

 

Figure 2 shows the means of the forward 

citations per patent by industry category. The 

industries generally rank as assumed by VOC 

theory: computers & telecommunications patents 

receive on average the most forward citations, 

followed by drugs & medical, electronic,

chemical, others, and finally mechanical. T-tests reveal that the differences between these means are significant 

beyond the 99% confidence level. Even if we sharpen the level of analysis by further subdividing the industry 

categories into their smaller sub-categories, we again find that patent citations behave more or less as assumed 

by VOC theory.23  

 Of course, analyzing the data in this manner introduces a potential truncation problem: older patents 

have had more time to be cited than younger patents. This problem is exacerbated in the NBER dataset since it 

only includes citations data from 1975 onwards.24 Therefore, patents granted before 1975 will suffer from 

further truncation in that a 1969 patent will contain the citations received from patents granted during 1975-

1999, but not from patents granted in 1969-74.  We can control for the overall truncation problem by excluding 

pre-1975 patents from consideration and by using multivariate regression analysis with a control for patent 

age.25 The results of these regressions are reported in Figure 3. First, we find in all of the regressions that the 

coefficient for patent age is significant and generally positive; note also that the age coefficient increases in 

strength when pre-1975 patents are omitted from the dataset, and consistently hugs 0.3 in all regressions 

conducted using the 1975-1999 patent data (see also Figs. 5-7 below). This is suggestive of the truncation 

effects described above. We can interpret this coefficient as indicating the number of additional citations 

received per patent for each year of its existence. The age coefficient does turn negative in Model 5, where only 

the very oldest patents are used. This suggests that patented innovations may have a “lifespan” of usefulness, 

generating much subsequent innovation while young, then slowly fading into obsolescence as either new 

innovations come to replace them or their capacity to serve as the foundation for new innovations is exhausted. 

Second, we find in Models 1 & 2 that, even when controlling for patent age (and with the added understanding 

that classification errors may exist), the industry coefficients generally line up as assumed by VOC theory: 

computers & telecommunications patents receive the most forward citations, followed by drugs & medical, 
                                                           
23 Exceptions include patents in the drugs, biotechnology, food, and organic compounds sub-categories which appear to be relatively 
poorly cited despite the fact that these are amongst VOC’s “radically innovative” industries; in the “incremental” sub-categories, patents 
related to gas, power systems, resins, and coatings appear to be more highly cited than VOC theory might assume. These might be 
partially explained by classification problems or by differences in the legal or technical need to cite in these industries. 
24 Due to the fact that citations data were not computerized prior to 1975. 
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Figure 3: OLS Testing of VOC’s Industry-Innovation Assumption (Dep. Variable = citations received per patent) 
 1 2 3 4 5 6 
Data Used: 1963-1999 1975-1999 1975-1999 

(excluding US) 
1975-1999 
 

1975-1980 1990-1995 

IT/Telecm 2.48 
(0.02)* 

3.43 
(0.02)* 

2.70 
(0.02)* 

3.52 
(0.02)* 

3.39 
(0.06)* 

5.17 
(0.03)* 

Drugs/Med 2.07 
(0.02)* 

2.29 
(0.02)* 

0.93 
(0.03)* 

2.29 
(0.02)* 

2.83 
(0.06)* 

3.02 
(0.04)* 

Electric 0.42 
(0.01)* 

0.95 
(0.02)* 

0.92 
(0.02)* 

1.07 
(0.02)* 

0.59 
(0.04)* 

1.42 
(0.03)* 

Chemicals 0.16 
(0.01)* 

0.14 
(0.02)* 

0.18 
(0.02)* 

0.24 
(0.02)* 

0.02 
(0.04) 

0.15 
(0.03)* 

Mechancl -0.31 
(0.01)* 

-0.22 
(0.02)* 

0.13 
(0.02)* 

-0.08 
(0.02)* 

-0.61 
(0.04)* 

0.016 
(0.03)* 

Other       
US    1.05 

(0.01)* 
  

patent age 
(yrs.) 

0.08 
(0.000)* 

0.31 
(0.001)* 

0.29 
(0.001)* 

0.31 
(0.001)* 

-0.04 
(0.008)* 

0.65 
(0.005)* 

_cons 3.07 
(0.01)* 

1.03 
(0.01)* 

0.82 
(0.01)* 

-0.40 
(0.01)* 

-7.29 
(0.17)* 

-0.42 
(0.04)* 

R2 0.02 0.10 0.10 0.10 0.02 0.08 
Obs 2923922 2139314 939037 2139314 384270 585758 
Note: Analysis is by ordinary least squares (OLS), Huber-White estimates of standard errors reported in parentheses. *p< .001. Source: NBER 2001.  
 
electronic, chemical, others, and finally mechanical. The coefficients here can be interpreted as the additional 

number of citations received per patent for patents granted to innovations in a particular industry (relative to the 

omitted category “Other”26). The mean citations received per patent in the 1975-1999 dataset is 4.9 (with a 

standard deviation of 7.8), therefore the size of the innovative differences between industries suggested by the 

coefficients is significant, but not immense.  

Since my findings in subsequent sections indicate that VOC’s evidence is sensitive to the US outlier, I 

run two regressions to consider its effects on the industry rankings. In Model 3, I omit the US data entirely, 

which drastically reduces the coefficient for the IT/Telecom and Drugs/Medical categories, and increases the 

coefficients for the Chemicals and Mechanical categories. When I instead use a US dummy (Model 4), the 

coefficients change significantly for only Chemicals and Mechanical patenting. The first thing to note in both 

these regressions is that the rankings do not change in the areas of most concern to VOC theory: chemicals, 

mechanical, and “other” patents receive fewer citations than those in VOC’s radically innovative sectors. 

Second, these regressions tell us that US is in fact a powerful outlier which affects the nature of global 

innovation, especially in frontier sectors. 

Given the time dynamics of innovation, it is also important to confirm that the findings above are not an 

artifact of averaging across a long time period. Models 5 & 6 address this concern, revealing that VOC’s 

industry assumption generally holds even when I limit the dataset to either the very earliest or very latest five 

years of patenting activity. In these regressions, computers & telecommunications patents consistently received 

the most citations, again followed by drugs & medical and electronics patents; there is however some shuffling 

amongst the remaining categories, especially mechanical patents which may suggest a recent small surge in 
                                                                                                                                                                                                       
25 All regressions reported here use a patent age based on grant year. Regressions performed using a patent age based on application year 
produced similar results. 

Mark Zachary Taylor                 Page          DRAFT COPY—8/20/2003 11



innovation there. But these minor shifts do not create any major problems for the VOC assumptions. Also, 

though not shown here, if we again further subdivide the six categories above into their 36 subcategories, we 

find that patent citations behave more or less as they do at the category level.27 Finally, given the non-constant 

variance in forward citations across industries (and later, countries), I correct for heteroscedasticity using Huber-

White estimators of standard errors in all regressions, but find no significant differences from the results 

generated by the traditional estimator. In sum, patent data generally support the VOC assumption about industry 

innovation characteristics. 
 
d. Testing VOC’s Predictions About National Innovative Character: Simple Patent Counts (670 words)  

Having confirmed the industry-based innovation assumption above, we can now reconsider the evidence 

offered by Hall & Soskice (Figure 1). Again, this chart is based on EPO patent data for the United States and 

Germany in thirty industries during two separate two-year periods. For each industry in each time period, Hall & 

Soskice calculated a patent specialization index (I) which simply subtracts a country’s fraction of its total 

patents in a particular field from the world’s fraction of total global patents in the same field.28 Hence a positive 

index score means greater specialization in innovation in that particular type of technology. The chart shows that 

the US specializes its patenting in industries typified by radical innovation, while Germany’s patent 

specialization is in industries typified by incremental innovation. The question then is whether this finding holds 

true across time and space, or have Hall & Soskice inadvertently selected outlying countries or years? In order 

to test this possibility, I use the same EPO dataset and computational formula used by Hall & Soskice, but 

instead calculate the patent specialization indices across a much longer time-span (1978-1995) and compare the 

innovative activities of the entire set of LME and CME countries.   

The results of this exercise are summarized below in Figure 4. Note that rather than requiring an exact 

quantitative match, I apply a more lenient qualitative standard for VOC theory to pass, only testing which 

country (or set of countries) has a higher patent specialization index in each of the thirty industries. Using Hall 

& Soskice’s data and methodology, I was able to closely reproduce their findings for Germany and the US in 

1983-84 and 1993-94. However, when I extend the time period to 1978-1995, German and US patenting fails to 

meet VOC predictions in polymers, new materials, and nuclear engineering. Even more discrepancies arise 

when we expand the dataset to compare patent specialization by the set of all LME countries versus the set of all 

CME countries. For example, in the 1983-84 period, the set of LME’s had higher patent specialization indices 

than the set of CME’s in three industries which Hall & Soskice describe as incremental (mechanical elements, 

basic materials, polymers), while CME patenting had higher specialization scores in two radical industries (new 

materials, audiovisual tech.). But the most striking disparity occurs when we exclude the United States from the  

 

                                                                                                                                                                                                       
26 “Other” includes innovations in miscellaneous areas such as house fixtures, furniture, pipes & joints, jewelry, cutlery, recepticals, 
undertaking, and amusement devices.  
27 With the same exceptions at the subcategory level as those found with the citations averages. See fn 17 above. 
28 For example, in biotechnology: IUS biotech = USbiotech/UStotal – Worldbiotech/Worldtotal . 
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Figure 4: Violations of VOC Theory for Innovation in 30 Technology Classes (shaded squares indicate violations)29 

  US v. Germany   LME’s v. CME’s   LME’s (ex-US) v. CME’s 
  1983-

84 
1993-

94 
 1978- 

95 
 1983-

84 
1993-

94 
1978-

95 
  1983-

84 
1993-

94 
1978-

95 
Agricultural 

Machines 
                 

Agriculture, Food                    

Audiovisual Tech.                 

Basic Materials, 
Chem. 

                 

Biotechnology                    

Civil Engineering                  

Consumer Goods                  

Control Systems                   

Electrical Energy                   

Engines                  

Environment                   

Handling                   

Information Tech.                  

Machine Tools                   

Materials 
Processing  

                  

Mechanical 
Elements 

                

Medical Engineering                    

New Materials                  

Nuclear Engineering                  

Optics                   

Organic Chemistry                    

Pharmaceuticals                    

Polymers                  

Process 
Engineering  

                   

Semiconductor                   

Surfaces                    

Telecom.                   

Thermal Processes                    

Transport                    

Weapons                  

Total Violations 0 0 3  5 8 5   14 12 13 
Source: EPO (Hall & Soskice, 2001) 
 
 set of LME countries; under these conditions we find that VOC theory has only marginally more predictive 

power than random chance. 

The NBER patent data presents us with a second dataset with which to test the patent specialization 

indices devised by Hall & Soskice. Such a test adds value in that the NBER dataset not only spans over twice 

                                                           
29 Patent specialization indices (I) for the set of LME’s, CME’s, and LME’s (excluding-US) are calculated by treating each set of nations 
as a single “country”. A violation (shaded square) in one of these columns indicates that the difference in aggregate patent specialization 
indices was opposite that found by Hall and Soskice (2001) in their German vs. US comparison.   
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the time-period (1963-1999) as the EPO data used by Hall & Soskice, but consists of USPTO patents and is 

therefore a completely independent dataset. The NBER data also uses a completely independent classification 

scheme which allows us to control for some of the potential classification problems and idiosyncrasies discussed 

above. Yet, despite these differences, our results are generally the same as those found using Hall & Soskice’s 

EPO data. I omit a graphic depiction of the results and instead explain the major findings. Of the 18 categories 

of innovation which I was able to map from Hall & Soskice to the NBER data, VOC’s predictions were born out 

relatively well (approximately 70-80% of the time, depending on the time period) when applied to the US and 

Germany.30 However, when we expand the dataset to test all LME countries versus all CME countries, we find 

that VOC theory loses a considerable amount of its predictive power, with a 72% success rate in 1983-84, but 

only 50% in 1993-94, and 56% over the entire 1963-1999 period. Omitting the US from the set of LME’s results 

in further deterioration, with VOC’s success rate ranging from 44-56%. Thus, after analyzing two different 

datasets and competing classification methods, it appears that the success of VOC theory strongly depends upon 

the inclusion of the United States as an LME.  
 
e. Testing VOC’s Predictions About National Innovative Character: Patent Citations (1245 words) 
 So far we have used simple patents counts in our comparisons of LME’s vs. CME’s, yet we know from 

the discussion above that forward citations of patents are an even better gauge of radical vs. incremental 

innovation. Therefore, in this section, I will use the forward citations data in the NBER patent dataset to test the 

VOC country claims directly, retaining the same techniques which I used above in testing the VOC assumptions 

about industries. As my dependent variable in all of the following regressions I again use citations-received per 

patent as a proxy for the radical vs. incremental nature of innovation. VOC theory suggests that country 

dummies or country-type dummies (LME, CME) are the primary independent variables of interest, as well as 

controls for industry-type (again we use industry category or sub-category), and of course a control for patent 

age should be included to address the truncation problem. Since the US outlier proved important in the simple 

statistical analysis above, I address it in two ways in the regressions. In some regressions a US dummy is 

introduced, in others the US is simply omitted from the class of LME’s (creating a new dummy: LMEx). For 

data, we use the NBER patent dataset for all countries’ patenting activity during the period 1975-1999.  

 We begin with regressions using controls only for patent age and country-type, the results of which 

(Figure 5) reinforce what we found previously: that LME’s are more radically innovative than CME’s (Model 1 

                                                           
30 Agricultural machines (a particularly difficult category to define in NBER terms) is the only category which persistently defies the 
VOC predictions in all time periods; while patenting in optics, pharmaceuticals, transport, organic chemistry, weapons, electrical energy, 
and nuclear engineering (narrowly measured) each contradicted VOC theory in different time periods.  
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v. Model 2), but that this finding depends entirely upon the inclusion of the United States as an LME (Model 3). 

This effect is apparent even when the CME dummy is run together with that for LME’s or LMEx’s (Models 4 & 

5). In each of these regressions, the coefficients can be interpreted as the additional number of citations received  

Figure 5: OLS Testing of VOC Innovation Theory, by Nation Type (1975-1999) 
 1 2 3 4 5 6 7 
LME 0.95 

(0.011)* 
  1.71 

(0.02)* 
 0.65 

(0.03)* 
 

CME  -0.59 
(0.011)* 

 0.93 
(0.02)* 

-0.67 
(0.01)* 

0.93 
(0.02)* 

0.93 
(0.02)* 

LMEx   -0.74 
(0.022)* 

 -0.95 
(0.02)* 

 0.65 
(0.03)* 

patent age 
(yrs.) 

0.28 
(0.001)* 

0.28 
(0.001)* 

0.29 
(0.001)* 

0.28 
(0.001)* 

0.28 
(0.001)* 

0.28 
(0.001)* 

0.28 
(0.001)* 

US      1.16 
(0.02)* 

1.81 
(0.02)* 

_cons 1.51 
(0.01)* 

2.26 
(0.01)* 

2.09 
(0.009)* 

0.76 
(0.02)* 

2.33 
(0.01)* 

0.76 
(0.02)* 

0.76 
(0.02)* 

R2 0.076 0.074 0.073 0.077 0.074 0.08 0.078 
Obs 2139314 2139314 2139314 2139314 2139314 2139314 2139314 
Note: Analysis is by ordinary least squares (OLS), Huber-White estimates of standard errors reported in parentheses. *p< .001. Source: NBER 2001.  

per patent for patents granted to innovations in a particular set of nations (LME’s, CME’s, or LMEx’s) relative 

to the rest of the world. Note how sharply the LME coefficient drops when we introduce a US dummy variable 

(Model 6) and, perhaps more interesting, that the LMEx’s appear to be less radically innovative than the CME’s 

(Models 7). Of equal importance is the small size of the coefficients and the differences between them. These 

indicate, for example in Model 4, that even when we do not control for the US-outlier, the innovative difference 

between LME’s and CME’s is smaller than a single citation per patent. Although this may be a statistically 

significant amount, it is far smaller than the innovative difference between the most vs. least innovative 

industries found above and does not suggest a large innovation gap. 

Figure 6: OLS Testing of VOC Innovation Theory, by Nation Type & Industry (1975-1999) 
 1 2 3 4 5 6 7 
LME 0.94 

(0.01)* 
  1.66 

(0.02)* 
 0.66 

(0.03)*  
CME  -0.59 

(0.01)* 
 0.89 

(0.02)* 
-0.66 
(0.01)* 

0.89 
(0.02)* 

0.89 
(0.02)* 

LME  
(excluding-US) 

  -0.68 
(0.02)* 

 -0.90 
(0.02)* 

 0.66 
(0.03)* 

US      1.10 
(0.02)* 

1.76 
(0.02)* 

patent age 
(yrs.) 

0.31 
(0.001)* 

0.31 
(0.001)* 

0.31 
(0.001)* 

0.31 
(0.001)* 

0.31 
(0.001)* 

0.31 
(0.001)* 

0.31 
(0.001)* 

IT/Telecom 3.53 
(0.02)* 

3.50 
(0.02)* 

3.42 
(0.02)* 

3.49 
(0.02)* 

3.49 
(0.02)* 

3.48 
(0.02)* 

3.48 
(0.02)* 

Drugs/Med 2.28 
(0.02)* 

2.28 
(0.02)* 

2.29 
(0.02)* 

2.29 
(0.02) 

2.29 
(0.02)* 

2.29 
(0.02)* 

2.29 
(0.02)* 

Electrical 1.07 
(0.02)* 

1.02 
(0.02)* 

0.94 
(0.02)* 

1.06 
(0.02)* 

1.02 
(0.02)* 

1.05 
(0.02)* 

1.05 
(0.02)* 

Chemicals 0.24 
(0.02)* 

0.21 
(0.02)* 

0.13 
(0.02)* 

0.22 
(0.02)* 

0.20 
(0.02)* 

0.22 
(0.02)* 

0.22 
(0.02)* 

Mechanical -0.09 
(0.02)* 

-0.14 
(0.02)* 

-0.22 
(0.02)* 

-0.11 
(0.02)* 

-0.13 
(0.02)* 

-0.11 
(0.02)* 

-0.11 
(0.02)* 

Other        
_cons 0.41 

(0.02)* 
1.28 
(0.01)* 

1.07 
(0.01)* 

-0.29 
(0.02)* 

1.25 
(0.01)* 

-0.29 
(0.02)* 

-0.29 
(0.02)* 

R2 0.10 0.10 0.10 0.10 0.10 0.10 0.10 
Obs 2139314 2139314 2139314 2139314 2139314 2139314 2139314 
Note: Analysis is by ordinary least squares (OLS), Huber-White estimates of standard errors reported in parentheses. *p< .001. Source: NBER 2001. 
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VOC theory also includes industry-type as a factor in determining innovative behavior. Hence a second 

set of regressions are run (Figure 6), identical to those reported in Figure 5 but with the addition of controls for 

industry. Yet we find no significant differences when the industry controls are added to the regression models. 

Again, the LME countries appear at first to be more radically innovative than the CME’s (Model 1 vs. Model 2), 

but not when the United States is excluded from the group of LME’s (Model 3). Note also that the industry 

coefficients in this regression match those found when we previously tested the VOC industry-innovation 

assumption above (Figure 3). In order to test this finding more directly we add a US-dummy, which again 

severely affects the coefficient of the LME dummy (Models 6 & 7). Regressions run at a finer level of analysis 

using industry subcategories (not shown) produce similar results.31  

Given the broad nature of VOC theory and the complex array of causal mechanisms it hypothesizes, a 

fixed effects model is perhaps the best, most efficient way to conduct a statistical test of its central predictions. 

While the NBER dataset affords us enough degrees of freedom to use countries dummies for all 162 nations, 

computer memory does not. I therefore run a final set of regressions in which I include dummies for 23 of the 

world’s highest patenting countries.32 These countries include the aforementioned LME and CME states in 

addition to France, Italy, Spain, Israel, Taiwan, Singapore, and South Korea. Using only country dummies, 

controlling for age, and correcting for heteroscedasticity, we find that the relative strengths of the coefficients 

for the remaining dummies do not quite line up along the lines predicted by VOC theory (Figure 7). Here the 

coefficients can be interpreted as the additional number of citations received per patent for patents granted to 

innovations in a particular nation relative to those granted to the rest of the world (ROW). Though not 

astronomical, the size of the coefficients do indicate significant innovative differences between states, and that 

these innovative differences are comparable to those across different industries. All of the coefficients are 

positive, indicating that patents from the rest of the world generally receive fewer forward citations than patents 

from our chosen countries. Patents from the US receive the most forward citations, those from Spain, Austria, 

and New Zealand consistently receive the least. Interestingly, Australia and New Zealand appear to deserve a 

place amongst the CME’s, while Japan seems to be one of the most radical innovators (Model 1). And while we 

are not immediately concerned with Hall & Soskice’s hybrid MME’s, the three which appear in the regressions 

(France, Italy, Spain) have major differences between them and do not appear to form a cohesive group. Also, 

the high placement of Israel (arguably a pre-1970s CME, increasingly MME thereafter) and Taiwan (arguably 

an MME), not mentioned in VOC theory, further suggest that there may be more to radical innovation than the 

variables captured by Hall & Soskice. Adding controls for industry do not have a significant impact on the 

rankings, except for some minor shuffling (Model 2).   
 

                                                           
31 An alternate interpretation of VOC theory suggests that in place of LME/CME/LMEx controls, we might include interaction terms 
(LME*industry, CME*industry, and LMEx*industry). I experimented with such interaction terms but produced the same general results 
as those reported above. 
32 As before, all pre-1975 patents are eliminated to control for truncation effects. 
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Figure 7: OLS Testing of VOC Innovation Theory, by Country & Industry (1975-1999)  
    LME’s       
 patent age 

(yrs.) 
US Ireland Canada UK Australia New 

Zealnd 
   

1 0.29 
(0.001)** 

2.74 
(0.03)** 

2.23 
(0.22)** 

1.74 
(0.05)** 

1.55 
(0.04)** 

1.14 
(0.06)** 

0.55 
(0.13)**    

2 0.32 
(0.001)** 

2.59 
(0.03)** 

1.93 
(0.22)** 

1.76 
(0.04)** 

1.35 
(0.04)** 

1.21 
(0.06)** 

0.68 
(0.13)**    

    CME’s       
 Japan Nethrlds Belgium Denmark Sweden Finland Germany Switz Norway Austria 
1 2.52 

(0.04)** 
1.34 
(0.05)** 

1.27 
(0.07)** 

1.07 
(0.09)** 

1.07 
(0.05)** 

1.05 
(0.07)** 

0.92 
(0.04)** 

0.77 
(0.05)** 

0.61 
(0.10)** 

 0.42 
(0.06)** 

2 2.24 
(0.04)** 

1.09 
(0.05)** 

1.28 
(0.07)** 

0.98 
(0.09)** 

1.02 
(0.05)** 

1.01 
(0.07)** 

1.00 
(0.04)** 

0.81 
(0.05)** 

0.69 
(0.10)** 

0.64 
(0.06)** 

    Others       
 Israel Singapore Taiwan S. Korea France Italy Spain ROW   
1 2.25 

(0.09)** 
1.90 
(0.17)** 

1.34 
(0.04)** 

1.21 
(0.04)** 

1.06 
(0.04)** 

0.69 
(0.07)** 

0.07 
(0.08) 

   

2 1.79 
(0.09)*8 

1.54 
(0.17)** 

1.56 
(0.04)** 

0.78 
(0.04)** 

0.86 
(0.04)** 

0.72 
(0.05)** 

0.18 
(0.08)*    

    Industries       
 IT/Telecm Drugs/Med Electrical Chemical Mechancl Other _cons R2 Obs  
1 

   
 

  
-0.25 
(0.03)** 

0.08 
2139314 

 

2 3.36 
(0.02)** 

2.33 
(0.03)** 

0.98 
(0.01)** 

0.23 
(0.01)** 

-0.14 
(0.01)**  

-1.14 
(0.04)** 0.10 2139314  

Note: Analysis is by ordinary least squares (OLS), Huber-White estimates of standard errors reported in parentheses. **p< .001, *p< .05. Source: NBER 
2001.  

Finally, if we believe that both quality and quantity of patents matter, that Ireland with its relative 

trickle of few but highly cited patents should not necessarily be considered more radically innovative than 

Germany with its slightly less cited ocean of patents, then we must instead look at total citations received over 

time. This data is charted below in Figure 8. Here we have merely multiplied the mean citations received per 

patent by the total number of patents for each country. This will allow us to capture both the number and value 

of patents in one measure. The plots are split horizontally into three groups (LME’s, CME’s, and other 

countries) for comparison. Again we see the US outlier, but no strong general differences in total citations 

between the different VOC country types. 
  
Figure 8: Total Forward Citations, 1975-1999 In sum, the VOC theory does not appear to 

explain innovation as measured by patenting 

activity. Rather, the success of VOC theory in 

predicting innovation appears to depend upon the 

inclusion of the United States, a major outlier, in 

the set of liberal market economies. We find this 

fact repeated regardless of the source of the patent 

data, the type of industry classification system used, 

or whether simple patents or forward citations are 

used. However, one caveat which bears repeating is 

that this finding depends an assumption of random 

error in using patents as a measure of innovation.
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Social scientists cannot yet completely describe the correlation between patents (an innovation output) and total 

innovation, nor do we fully understand how propensity to patent varies across industry, across country, and over 

time. We therefore briefly consider the non-patent evidence for differences in national innovation in the next 

section. 
 
  
V. Additional Evidence (825 words) 
 Patent statistics are by no means the only innovation data which paint a picture contradictory to the 

VOC claims, scholarly journal articles are another useful measure of innovation which reinforces the cross-

national findings discussed above. Scholarly publications data offer advantages similar to those of patents, with 

each journal article representing a quantum of research innovation which must pass independent review and 

which tends to be cited in proportion to its innovative impact. More importantly, scholarly publications data are 

completely independent of patents: they are generally produced by a different set of innovators, affected by 

different incentives, and judged according to different institutional standards (McMillan & Hamilton 2000). Of 

course, journal articles also suffer many of the same shortcomings as patents, including difficulties in 

classification, problems with valuation, and uncertainty regarding to what degree journals represent the universe 

of innovation.33 These difficulties are further complicated by changing journal sets, the lack of a single 

standardized referee process, and the relative importance of prestige and popularity in the publication process.  

However, just as with patents, information sciences scholars have found legitimate and rigorous applications for 

publications data in measuring innovative output. While this debate is better summarized elsewhere, the current 

consensus is that there is reasonable basis for using journal articles as a window on innovative activity in the 

aggregate.34 

VOC theory does not make specific predictions regarding scholarly publications patterns, and indeed its 

authors may never have intended it to. Nonetheless, we might infer from VOC theory the following hypothesis: 

that scholarly publications by LME researchers should show specialization in fields associated with 

revolutionary scientific advances, while CME’s should show specialization in fields associated with incremental 

scientific advances. Although it is not quite clear what a “radically” versus “incrementally” innovative field 

might be, one could simply map the typology used by Hall & Soskice for industrial sectors over to academic 

sectors. For example, CME’s should excel in publishing in the engineering and technology journals, LME’s in 

biology, medicine, and physics. A second hypothesis might surmise that researchers in the CME’s should excel 

in professional journals and applied sciences publications where incremental research is more prominent, while 

LME researchers should publish heavily in the more academic or theoretical sciences journals where the 

research tends toward the revolutionary. A third, and less controversial, hypothesis would be that LME 

publications should simply have higher forward citation averages than CME publications.  

                                                           
33 the innovative “representativeness” of journal articles is more of a problem in the social sciences, and less so in the physical sciences, 
see Hicks 1999. 
34 Glanzel and Moed 2002, Bourke and Butler 1996, Garfield 1972. 
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Figure 9: Specialization in Scholarly Publications (publications per field as a % of total) 

1986 
Clincl 

Med 
Bio- 
Med Bio Chem Physics 

Earth 
Space 

Eng- 
Tech Math Psych. 

Soc. 
Sci. Health Prof. Total 

World 29.8% 15.0 7.9 12.5 12.2 4.4 6.7 1.8 2.7 3.7 0.9 2.7 100% 
LME 31.6% 14.6 9.1 7.7 9.1 4.9 6.4 1.8 3.9 5.1 1.4 4.4 100% 
CME 34.2% 15.1 6.8 14.2 12.9 3.0 8.0 1.7 1.4 1.8 0.3 0.6 100% 
LME 
(ex-US) 32.7% 13.8 12.2 8.6 7.9 5.3 6.3 1.7 3.1 4.8 1.0 2.6 100% 
              

1999 
Clincl 

Med 
Bio- 
Med Bio Chem Physics 

Earth 
Space 

Eng- 
Tech Math Psych. 

Soc. 
Sci. Health Prof. Total 

World 29.0% 15.0 7.0 12.5 15.0 5.4 6.8 2.0 2.0 2.7 0.9 1.8 100% 
LME 32.1% 16.0 7.3 8.0 10.0 6.2 5.9 1.8 3.3 4.2 1.5 3.3 100% 
CME 32.7% 15.0 6.5 13.5 17.0 4.0 6.2 1.5 1.2 1.3 0.4 0.5 100% 
LME 
(ex-US) 32.0% 14.4 10.0 8.5 9.4 6.4 6.1 1.7 3.0 4.4 1.6 2.2 100% 
Source: National Science Board 2002. 

 
Yet, none of the patterns hypothesized above can be found in the cross-national publications data. 

Consider the ISI’s simple journal publication data compiled in Figure 9. Compare the world publication rates by 

field with those of the LME’s and CME’s. As a group, the LME’s tend to consistently specialize in clinical 

medicine, biology, earth-space, psychology, social science, health, and professional journals; CME’s tend to  
Figure 10: Relative Prominence of Scientific Literature by Country/Economy and Field (1999) 

 
All 
fields Biolgy 

Bio- 
med Chem 

Clincl 
Med 

Earth 
Space 

Eng- 
Tech Math Physics 

Soc. 
Sci. Psych Health Prof. 

United 
States 1.35 1.16 1.40 1.50 1.27 1.31 1.20 1.24 1.47 1.28 1.12 1.14 1.16 
United 
Kingdom 1.04 1.25 0.98 1.14 1.00 1.03 0.99 1.23 1.07 1.07 1.16 0.90 0.64 
Canada 0.99 1.05 0.91 1.30 1.11 0.89 0.89 0.92 0.99 0.84 1.07 0.87 0.89 
Australia 0.87 1.04 0.78 1.05 0.91 0.88 1.05 1.02 0.90 0.65 0.80 0.88 0.84 
Ireland 0.82 0.99 0.57 0.98 0.87 0.67 0.85 1.02 0.93 0.56 0.76 0.67 0.47 
New 
Zealand 0.76 0.89 0.57 1.00 0.86 0.71 0.99 0.65 1.07 0.78 1.06 0.97 0.73 
LME 1.235 1.136 1.264 1.381 1.188 1.190 1.123 1.193 1.340 1.167 1.104 1.055 1.069 
LME  
(ex-US) 0.986 1.104 0.918 1.160 1.007 0.944 0.966 1.082 1.027 0.932 1.066 0.889 0.729 
              
Switz. 1.37 1.41 1.40 1.45 1.08 1.16 1.77 1.07 1.36 0.66 0.59 0.48 0.86 
Netherlds 1.12 1.19 0.89 1.41 1.08 1.14 1.24 0.94 1.26 0.87 1.03 1.13 0.86 
Sweden 1.07 1.30 0.87 1.33 0.99 0.78 1.11 1.02 1.10 0.86 0.78 0.93 0.53 
Denmark 1.04 1.21 0.77 1.20 0.94 0.85 1.34 1.36 1.35 0.55 0.63 0.70 1.17 
Finland 1.02 1.17 0.86 0.94 1.03 0.63 0.95 0.92 1.01 0.72 0.89 1.38 0.73 
Germany 1.01 1.08 1.00 1.07 0.83 1.11 1.06 1.08 1.27 0.42 0.72 0.48 0.31 
Belgium 0.95 1.14 0.80 1.06 0.92 0.75 1.01 1.04 0.96 0.72 0.86 0.34 0.81 
Austria 0.91 1.04 0.83 0.96 0.81 0.64 1.01 0.64 1.15 0.45 0.65 0.83 0.51 
Japan 0.83 0.79 0.78 0.99 0.76 0.83 1.00 0.72 0.87 0.41 0.43 0.53 0.62 
Norway 0.82 1.18 0.67 0.80 0.82 0.86 1.04 1.23 0.84 0.76 0.82 0.71 0.58 
CME 0.968 1.041 0.899 1.078 0.871 0.968 1.070 0.968 1.069 0.613 0.762 0.854 0.612 
Note: Each number represents the country’s share of cited literature adjusted for its share of published literature. A score of 1.00 would 
indicate that the country’s share of cited literature is equal to the country’s world share of scientific literature. A score greater (less) than 
1.00 would indicate that the country is cited relatively more (less) than is indicated by the country’s share of scientific literature. 
Example: IUS biology = (# USbiology, cited / # Worldbiology, cited) / (# USbiology, published /# Worldbiology, published). Source: National Science Board 
2002, Appendix Tables 5-43, 5-52. 
 
consistently specialize in clinical medicine, chemistry, and physics. Over time the CME’s have increased their 

specialization in biomedical research, physics, and earth-space, but weakened in clinical medicine, chemistry, 
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and engineering & technology; while the LME’s have increased their specialization in biomedical, physics, and 

earth-space. Using forward citation indices (Figure 10 above) we find the LME’s beating CME’s in all fields. 

When we exclude the US from the set of LME’s, the LME’s appear to have higher citations than the CME’s in 

all fields except earth & space, engineering, and physics. Relatively speaking, LME’s are strongest in chemistry, 

physics, biomedical research, and math. CME’s are strongest in chemistry, engineering, physics, and biology. 

None of these findings is what we might expect from VOC theory. 

**[Following 2 paragraphs omitted from published draft]** 
 We should also take a prima facie look at technological diffusion in LME’s and CME’s.35 Such a line of 

inquiry might not necessarily be endorsed by VOC theorists, but it is worth brief consideration. The motivation 

here is twofold. First, innovation and diffusion are interdependent, and can often be mistaken for one another 

empirically. Hence, it is possible that any original observations which might underlie the VOC innovation 

claims could have been misidentified by researchers. Second, and more importantly, VOC theory itself 

motivates a look at diffusion, since the incentives described by Hall & Soskice as affecting innovation can just 

as easily be construed as affecting diffusion. We therefore map the VOC innovation claims into a diffusion 

context and hypothesize that: more radical technologies should diffuse faster in the LME’s, while the follow-on 

(or “second-generation”) incremental improvements to these technologies should diffuse more quickly in the 

CME’s.  

Testing our diffusion claims is relatively straightforward. Again, the purpose here is not to perform a 

definitive test, but rather to see if there is any initial empirical support for an application of VOC theory to an 

important phenomena that is related to, but distinct from, innovation. Fortunately, the measurement of 

technological diffusion is both less controversial and easier to perform than is innovation; unfortunately, there is 

no single measure for technological diffusion or centralized source of diffusion data, therefore it must be 

measured and coded on a case by case basis. Since this investigation is to be brief and probative, priority is 

therefore given to finding datasets that are reliable, complete, and which cover the countries and years of 

interest. The International Telecommunications Union provides such data on the diffusion of a handful of 

telecommunications and computer technologies. These diffusion data fail to tell a consistent story. In some 

instances, the LME’s do seem to be better at diffusing radical innovations, while the CME’s appear to be better 

at diffusing incremental innovations. For example, the LME’s rapidly diffused first-generation (analog) cellular 

phone technology, but the CME’s were quicker to spread second-generation (digital) cellular, and this 

relationship holds even when the US is excluded from the LME data (Figure 11). However, such a relationship 

is not consistent across technologies or across time, even within the same sector. For instance, the diffusion of 

television technology of all sorts (initial, cable, satellite) followed the same pattern as the patent data: the LME’s 

appear to lead the CME’s in diffusion, but omitting the US from the dataset reverses this relationship. And if 

one considers the Internet to be an incremental innovation on computers, then the relationship further falls apart: 

CME’s consistently trail the LME’s (with or without the US) in the diffusion of both technologies. Of course, 
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further research needs to be done in order to control for greater variation in sector and time period, however 

these initial findings are somewhat inauspicious. 
 

Figure 11: Diffusion of Cellular Technology 
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**[Preceding 2 paragraphs omitted from published draft]** 

Finally, despite problems in measuring pre-1960s innovation and diffusion, history provides researchers 

with some natural experiments which deserve further investigation. For example, Japan, during its first brush 

with democracy (1910s-1930s), was distinctively “LME-ish” but does not appear to have followed a 

significantly different innovation pattern than did post-war CME Japan. During this earlier period, Japan had a 

strong and confrontational labor movement upon which business did not hesitate to inflict frequent and severe 

dislocations for the sake of technological advance. Moreover, the dependence of pre-war Japan on external trade 

and finance exposed even the powerful zaibatsu to the vicissitudes of international markets and created many 

LME-type incentives for economic actors. Yet the Japanese appear to have been consistent incremental 

innovators during this time. On the other hand, the Germans of this time period rivaled the United States in 

technological advance, producing wave after wave of radical innovation in multiple fields including the gas-

powered automobile, the Zepplin, the Haber-Bosch process, blood-typing, aspirin, and organic chemicals to 

name but a few. Yet, the Germans had many of the same CME-type institutions and incentives as we find there 

today, including a national welfare system, national health care, and large business cartels negotiating with each 

other, and sometimes with workers, in a fairly CME-like manner. These stylized facts, while not conclusive, do 

suggest areas for deeper research and further testing of VOC claims, both as a theory of innovation and as 

general theory of political economy. 
 
 
VI. Implications (810 words)  

                                                                                                                                                                                                      

 
 In sum, we have found that the predictions made by Varieties of Capitalism theory regarding national 

differences in technological innovation are not supported by the empirical data, and that the existing evidence 

depends heavily on the inclusion of a major outlier, the United States, in the class of liberal-market economies. 

My empirical investigation included simple patent counts, patents weighted by forward citations, and scholarly 
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publications (both simple counts and weighted). I investigated data covering all of the VOC countries over the 

course of several decades, little of which revealed the patterns predicted by VOC scholars.   

 These findings carry significant repercussions for both VOC and innovation theory. First, insofar as 

patents and scholarly publications are good indices of innovation, VOC theory clearly fails to provide an 

accurate picture of the innovation process, and hence the trade and production patterns which follow. Whether 

this is a problem with the LME-CME classification system or VOC’s assumptions and causal mechanisms is not 

clear from the evidence presented here. However, I would suggest that while the firm may be the key actor in 

capitalist economies, and the primary producer of goods and services, it is difficult to ignore the role of the state 

in innovation as strongly as VOC’s theory and classification system do. Throughout the world, much useful 

innovation is the result of state-sponsored and state-managed R&D, often originating in concerns with national 

security. Another stream of innovative R&D in many countries comes from the public university system, or 

private universities benefiting from significant state-support. In still other states, innovation takes the form of 

incremental improvements on imported technologies, where the government has had a heavy hand in deciding 

which technologies will get imported. Often, the government also plays a key role as a market maker for, and 

main diffuser of, new innovations. However, VOC’s innovation theory omits these causal mechanisms entirely. 

This does not mean that VOC scholars are wrong to bring the firm onto the center-stage of political economy, 

but rather that in trying to get away from a hackneyed focus on government protectionism and state-ownership, 

they may have overcompensated. Future theorists must find a synthesis between the corporate-centered 

relationships emphasized by VOC and the state-centered mechanisms employed in traditional political economy. 

 Second, the statistical analyses above consistently point to the United States as an important factor in 

explaining global patterns of innovation. Furthermore, the fixed effects regressions reported in Figure 7 reveal 

that many of the world’s most innovative countries are those which also tend to have the strongest military and 

economic ties with the US, including Japan, Canada, the UK, Israel, and Taiwan. Together, these observations 

suggest that in order to better understand the political economy of comparative rates of innovation, future 

research should perhaps focus less on domestic institutions and more on international relations. This is not to 

argue that domestic institutions are insignificant, but rather that the scope and depth of a country’s relationship 

with the lead innovator may also carry significant weight in determining its technological profile. There is 

theoretical grounds for this supposition in that while the basic laws of science may be public goods, the tacit 

knowledge required to apply these laws to proper use and development of new technology is relatively 

excludable. Therefore factors such as foreign direct investment, educational exchanges, military assistance, and 

international flows of science and engineering labor between the lead innovator and other countries should be 

explored for their effects on innovation and the agglomeration patterns which interest both VOC and trade 

theorists. 

Of course, we should recognize that the research reported above, while suggestive, does not necessarily 

shut the door on a Varieties of Capitalism approach to technological innovation. Innovation is a notoriously 

difficult phenomenon to measure quantitatively, and existing measures carry with them considerable noise, 
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hence further progress needs to be made on method as well as theory. Nor does our critique here necessarily 

apply to other aspects of VOC theory. VOC is a broad approach to social behavior, consisting of myriad 

hypotheses regarding almost the whole spectrum of political economy including corporate governance, 

monetary policy, welfare programs and labor reform. These hypotheses are not necessarily interdependent and 

need to be considered and tested each on its own merits. Finally, as social scientists increasingly turn to 

institutions and international relationships in order to explain various phenomena related to cross-national 

variance in innovation, VOC scholars should be applauded for inserting political science into an area of research 

from which it has been all but absent.36 While economists and sociologists have produced some excellent studies 

of the role of these variables in international technological performance, the comparative advantage which 

political scientists bring to the field in terms of methods and theory make this an area deserving far greater 

attention by students of politics. Varieties of Capitalism scholars have therefore provided a valuable and useful 

starting point for such an endeavor.  
 
 
 
 
 

                                                           
36 Notable exceptions include Edquist 1997; Samuels 1994;  Lundvall 1992; Nelson 1993. 
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